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1.0 INTRODUCTION 

Bulk metallic glasses have unique technological properties much different than 
corresponding crystalline alloys of the same composition. Examples are high yield 
strength and high corrosion resistance. Further, being glassy, they can be formed 
easily into complex shapes. This combination of desirable engineering properties 
makes metallic glasses extremely attractive to Air Force Systems. 

While many metallic compositions have been made in the glassy state, the 
search for bulk metallic glass compositions in technologically important systems 
remains at present largely an empirical exercise requiring large effort and time. There 
exists a need to develop a fundamental understanding of why certain compositions form 
glasses easily (i.e., have good glass forming ability, GFA). 

Several approaches have been proposed in the literature to rationalize the 
relationship between GFA and the alloy composition. These approaches can be 
dassified as: 

a) Macroscopic: These attempt either to correlate GFA with some measurable 
property or to estimate the critical cooling rate - the minimum cooling rate 
necessary to form a glass of some speCified thickness (say 1 mm) - as a 
function of composition using macroscopic thermodynamics and kinetics. 

b) 	 Microscopic: These attempt to rationalize, at an atomic level, the kinetic 
sluggishness of the glassy state to crystallize. For example, Miracle at AFRL 
[1] has developed a dense cluster packing model based on a prescribed 
connection of solute centered dense clusters. 

The goal of the present work was to apply to metallic glass systems a different 
microscopic approach, which is based on the average bond-constraint density. We will 
refer to this model as the ABC model. In the ABC model, the structure of a glass is 
viewed as an extended topologically - disordered (TO) network of rigid atomic bonds 
with an energy comparable to that of the corresponding equilibrium crystalline state. 
The basic ideas of the ABC model have been worked out in detail for ionic and covalent 
systems [2, 3]. This report evaluates the potential of the ABC model for predicting glass 
forming compositions in metallic systems. 

2.0 THE AVERAGE BOND CONSTRAINT (ABC) MODEL 

2.1 	 Basic Principles 

The ABC model is based on the following postulates: 

1. The structure of a glass is a 3-dimensional network of rigid bonds such that: 

a) 	 The short range order (SRO) - defined by the set of near neighbor 
coordination numbers and distances - in the glass network of a given 
composition is the same as in the primary crystal phase for that 
composition. 

b) 	 The glass network has no long range order and the network is 
topologically disordered (TO). 



2. The stability of a glass network against crystallization is caused by: 

a) 	 Low energy of the TD network 

i) 	 The chemical energy of the network (determined by primarily by its 
SRO) is comparable to that of the crystal, and 

ii) 	 The strain energy in the glassy network (i.e., the excess energy in 
bonds due to their lengths being different from the corresponding 
equilibrium lengths) is minimized. 

b) 	 Crystallization requires rearrangement of topological disorder which is a 
process with high activation energy. 

2.2 General Steps in Applying the ABC Model 

1) The compositions and SRO's of the primary crystal phase are determined 
from the equilibrium phase diagram of the system and from the crystal 
structure tables. 

2) An expression is formulated for the average number (n) of bond-constraints 
per atom in terms of the alloy composition (x), the bond strengths (weak or 
strong), and the SRO (the set of coordination numbers, Zij). 

3) 	The degrees of freedom, f, per atom, defined as follows 

f(x) == 	 3 - n(x), (1 ) 

are calculated as a function of x. 

Compositions for which f is negative, are termed over-constrained, have too 
much strain energy), and do not form a glassy network easily. When f is positive and 
large, the system is too flexible (or floppy) and permits rapid crystallization. A glass 
forms most easily at the composition X* for which 

f(X*) = 0 	 (2) 

2.3 	 ABC Model Equations for a general binary system A(1-x) Bx 

An expression for the average bond constraint per atom, n(x), can be written as 

n(x) = (1-x) eAA ZAA/2 + x [eSA ZSA+eSS Zss/2] + J.lA (1-x) (2 ZA -3) + J.ls x (2 Zs
3) (3) 

Here, 

=relative strength of an average i-j bond ( =1 if strong, =0 if weak). 

= coordination number of j atoms around an i-th atom. 

= total coordination number of i-th atom. 

= weight of the angular (covalent) bonds around the i -th atom. J.li 

x = mole fraction of the solute (Le., component 8). 

While not shown explicitely in eqn 3, the coordination numbers in general vary 
with the composition. Using equations 1 and 3 and establishing Zij (X) from information 
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about the SRO of the primary crystal, one could calculate f(x) and, in turn, identify the 
values of X*. 

In the case of a non-covalent (IlA = 0, and IlB = 0) binary system which exhibits 
large negative heat of mixing, it is reasonable to assume that 8AA =0, 8BB =0, and 8AB 
= 1. For this case, eqn (3) reduces to 

!(x)=3-XZBA 	 (4) 

Before solving for X* using eqn 4, it is necessary to establish the X-dependence 
of the coordination number, ZBA. 

2.4 Model for the Composition Dependence of the Coordination Numbers 

For all compositions lying between two neighboring eutectic compositions Xeu(1) 
and Xeu(2), the primary crystal phase is the same. According to the ABC model, the 
SRO in the melt is identical to the SRO of the primary crystal when the composition of 
the melt is same as that of the crystal. When the two compositions are different, we 
postulate that 

a) 	The environment around all solute atoms in the melt is the same as in the 
primary crystal. This implies that the coordination numbers ZBA and ZBB are 
constant and equal to their respective values in the primary crystal. 

b) 	 The total coordination number of A (i.e., ZA = ZAB + ZAA) is also the same as in 
the primary crystal. Since ZAB is determined from the equality: 

ZAB =[x/(1-X)] Z BA 	 (5), 

it follows that 

ZAA (X) = ZA (Total) - ZAB(X). 	 (6) 

2.5 Application to the Ni-Nb System 

The following data about crystalline and eutectic compositions and SROs are 
available from phase diagrams [4] and crystal structure tables [5] in the Ni-Nb system: 

Crystal # X(Crystal) X(Eutectic) ZAA ZAB ZBA 
ZBB 

1 (FCC Ni) 0 0.16 12 0 12 0 

2 Ni3 Nb 0.25 0.41 8 4 12 0 

3 Nis Nb7 0.54 8 8 7 5 

4 (BCC Nb) 1.00 0 8 0 8 

Using this SRO information and eqns 5 and 6, we can now write the expressions 
for the x dependence of Zij. These expressions are shown in Table II. 
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Table II; Expressions for coordination umbers in the Ni-Nb system. 

Composition Range ZAA (X) ZAB(X) ZBA ZBB 

X < 0.16 12 (1-2X)/(1-X) 12X1(1-X) 12 0 

0.16 - 0.41 12(1-2X)/(1-X) 12X1(1-X) 12 0 

0.41 - 0.54 (16-23X)/(1-X) 7X1(1-X) 7 5 

0.54 -1.00 8 0 0 8 

Using Eqn 4 and the values of ZBA shown in table II, it can be shown that X* can 
take only two values: 0.25 and 3/7 (= 0.43). The value X = 0.25 corresponds to the 
intermetallic compound NbNb with high liquidus temperature and thus is not suitable 
glass forming composition. This leaves X = 0.43 as the only composition suitable for 
forming glasses in the Ni-Nb system. 

3~0 DISCUSSION 

Before discussing the result for the Ni-Nb system, it is useful to emphasize the 
following about the ABC model. 

a) While, in principle, the ABC model provides a method for calculating X* 
values, these compositions only represent relatively easy glass forming 
compositions. Glasses can always be formed for any composition provided 
the melt is cooled sufficiently rapidly. 

b) 	 The calculated values of X* are only approximate as the calculations depend 
on various assumptions about the bond strengths, covalency, and 
coordination numbers. Clearly, calculated value of X* points to a small 
composition range where glass formation may be easy. One could estimate 
this composition range (X1* to X2*) from the following equations: 

X1* = 2.51 ZBA and X2* = 3.51 ZBA. (7). 

c) 	 Lastly, additional information such as liquidus temperature, eutectic and 
intermetallic compound compositions should be complemented to the 
calculated X* values when finalizing the best glass forming compositions. 

For the Ni-Nb system, the composition range for X* corresponds to 0.43 ± 0.07 
(i.e., 0.36 to 0.50). The actual data [6,7] in the Ni-Nb system show that good glass 
formation occurs at several compositions 0.37,0,44,0.50, and 0.60. The first three are 
all within the predicted range. This good agreement provides a strong support for the 
ABC model for calculating the glass forming composition range. 

4.0 CONCLUSIONS 

This work has demonstrated that the ABC model has good potential for 
predicting bulk metallic glass compositions. The model is technologically very useful 
because all the information needed to calculate glass forming compositions in a system 
is already available through phase diagrams and crystal structure tables. 
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